Главная » Фундамент » Определение прочности бетона неразрушающими методами контроля

Определение прочности бетона неразрушающими методами контроля

Определение прочности бетона при обследовании зданий и сооружений

В предлагаемой статье рассмотрены основные методы неразрушающего контроля прочности бетона, применяемые при обследовании конструкций зданий и сооружений. Приведены результаты экспериментов по сопоставлению данных, получаемых неразрушающими методами контроля и испытанием образцов. Показывается преимущество метода отрыва со скалыванием перед другими методами контроля прочности. Описываются мероприятия, без выполнения которых применение косвенных неразрушающих методов контроля недопустимо.

Прочность бетона на сжатие является одним из наиболее часто контролируемых параметров при строительстве и обследовании железобетонных конструкций. Имеется большое число методов контроля, применяемых на практике. Более достоверным, сточки зрения авторов, является определение прочности не по контрольным образцам (ГОСТ 10180-2012), изготовляемым из бетонной смеси, а по испытанию бетона конструкции после набора им проектной прочности. Метод испытания контрольных образцов позволяет оценить качество бетонной смеси, но не прочность бетона конструкции. Это вызвано тем, что невозможно обеспечить идентичные условия набора прочности (вибрирование, прогрев и др.) для бетона в конструкции и бетонных кубиков образцов.

Методы контроля по классификации ГОСТ 18105-2010 разделены на три группы:

  1. Разрушающие;
  2. Прямые неразрушающие;
  3. Косвенные неразрушающие.

К методам первой группы относится упомянутый метод контрольных образцов, а также метод определения прочности путем испытания образцов, отобранных из конструкций. Последний является базовым и считается наиболее точным и достоверным. Однако при обследовании к нему прибегают довольно редко. Основными причинами этого являются существенное нарушение целостности конструкций и высокая стоимость исследований.

Таблица 1. Характеристики методов неразрушающего контроля прочности бетона.

** по данным источника [3] без построения частной градуировочной зависимости

В основном применяются методы неразрушающего контроля. При этом большая часть работ выполняется косвенными методами. Среди них наиболее распространенными на сегодняшний день являются ультразвуковой метод по ГОСТ 17624-2012, методы ударного импульса и упругого отскока по ГОСТ 22690. Однако при использовании указанных методов редко соблюдаются требования стандартов по построению частных градуировочных зависимостей. Некоторые исполнители не знают этих требований. Другие знают, но не понимают, насколько велика ошибка результатов измерений при использовании зависимостей, заложенных или прилагаемых к прибору, вместо зависимости, построенной на конкретном исследуемом бетоне. Есть «специалисты», которые знают об указанных требованиях норм,но пренебрегают ими, ориентируясь на финансовую выгоду и неосведомленность заказчика в данном вопросе.

Про факторы, влияющие на ошибку измерения прочности без построения частных градуировочных зависимостей, написано много работ, в том числе приведенные в списке литературы [1,2]. В табл. 1 представлены данные по максимальной погрешности измерений различными методами, приведенные в монографии по неразрушающему контролю бетона [3].

В дополнение к обозначенной проблеме использования несоответствующих («ложных») зависимостей обозначим еще одну, возникающую при обследовании. Согласно требованиям СП 13-102-2003 обеспечение выборки измерений (параллельных испытаний бетона косвенным и прямым методом) на более чем 30 участках является необходимым, но не достаточным для построения и использования градуировочной зависимости. Необходимо, чтобы полученная парным корреляционнорегрессионным анализом зависимость имела высокий коэффициент корреляции (более 0,7) и низкое СКО (менее 15% от средней прочности). Чтобы данное условие выполнялось, точность измерений обоих контролируемых параметров (например, скорость ультразвуковых волн и прочность бетона) должна быть достаточно высокой, а прочность бетона, по которому строится зависимость, должна изменяться в широком диапазоне.

При обследовании конструкций указанные условия выполняются редко. Во-первых, даже базовый метод испытания образцов нередко сопровождается высокой погрешностью. Во-вторых, за счет неоднородности бетона и других факторов [4] прочность в поверхностном слое (исследуемая косвенным методом) может не соответствовать прочности того же участка на некоторой глубине (при использовании прямых методов). И наконец, при нормальном качестве бетонирования и соответствии класса бетона проектному в пределах одного объекта редко можно встретить однотипные конструкции с прочностью, изменяющейся в широком диапазоне (например, от В20 до В60). Таким образом, зависимость приходится строить по выборке измерений с малым изменением исследуемого параметра.

Определение прочности бетона неразрушающими методами контроля Рис. 1 . Зависимость между прочностью бетона и скоростью ультразвуковых волн

В качестве наглядного примера вышеуказанной проблемы рассмотрим градуировочную зависимость, представленную на рис.1. Линейная регрессионная зависимость построена по результатам ультразвуковых измерений и испытаний на прессе образцов бетона. Несмотря на большой разброс результатов измерений, зависимость имеет коэффициент корреляции 0,72, что допустимо по требованиям СП 13-102- 2003. При аппроксимации функциями, отличными от линейной (степенной, логарифмической и пр.) коэффициент корреляции был менее указанного. Если бы диапазон исследуемой прочности бетона был меньше, например от 30 до 40 МПа (область, выделенная красным цветом), то совокупность результатов измерений превратилась бы в «облако», представленное в правой части рис. 1. Данное облако точек характеризуется отсутствием связи между измеряемым и искомым параметрами, что подтверждается максимальным коэффициентом корреляции 0,36. Иными словами, градуировочную зависимость здесь не построить.

Также необходимо отметить, что на рядовых объектах количество участков измерения прочности для построения градуировочной зависимости сопоставимо с общим количеством измеряемых участков. В данном случае прочность бетона может быть определена по результатам только прямых измерений, а в градуировочной зависимости и использовании косвенных методов контроля уже не будет смысла.

Таким образом, без нарушения требований действующих норм для определения прочности бетона при обследовании в любом случае необходимо в том или ином объеме использовать прямые неразрушающие либо разрушающие методы контроля [2]. Учитывая это, а также обозначенные выше проблемы, далее более подробно рассмотрим прямые методы контроля.

К данной группе по ГОСТ 22690-2015 относится три метода:

  1. Метод отрыва;
  2. Метод отрыва со скалыванием;
  3. Метод скалывания ребра.

Метод отрыва основан на измерении максимального усилия, необходимого для отрыва фрагмента бетонной конструкции. Отрывающая нагрузка прилагается к ровной поверхности испытываемой конструкции за счет приклеивания стального диска (рис. 2), имеющего тягу для соединения с прибором. Для приклеивания могут использоваться различные клеи на эпоксидной основе. В ГОСТ 22690 рекомендуются клеи ЭД20 и ЭД16 с цементным наполнителем. На сегодняшний день могут применяться современные двухкомпонентные клеи,производство которых хорошо налажено (POXIPOL, «Контакт», «Момент» и др.). В отечественной литературе по испытанию бетона [5, 6] методика испытания предполагает приклеивание диска к участку испытания без дополнительных мероприятий по ограничению зоны отрыва. В таких условиях площадь отрыва является непостоянной и должна определяться после каждого испытания. В зарубежной практике перед испытанием участок отрыва ограничивается бороздой, создаваемой кольцевыми сверлами (коронками). В данном случае площадь отрыва постоянна и известна, что увеличивает точность измерений.

Определение прочности бетона неразрушающими методами контроля Рис. 2. Прибор для метода отрыва с диском для приклеивания к бетону

После отрыва фрагмента и определения усилия определяется прочность бетона на растяжение (Rbt),по которой с помощью пересчета по эмпирической зависимости может быть определена прочность на сжатие (R). Для перевода можно воспользоваться выражением, указанным в пособии [7]:

Определение прочности бетона неразрушающими методами контроля

Для метода отрыва могут применяться различные приборы, используемые и для метода отрыва со скалыванием, такие как ПОС-50МГ4, ПИВ, DYNA (рис. 2), а также старые аналоги: ГПНВ-5, ГПНС-5. Для проведения испытания необходимо наличие захватного устройства, соответствующего тяге, расположенной на диске.

В России метод отрыва не нашел широкого распространения. Об этом свидетельствует и отсутствие серийно выпускаемых приборов, приспособленных для крепления к дискам, а также самих дисков. В нормативных документах отсутствует зависимость для перехода от усилия вырыва к прочности на сжатие. В новом ГОСТ 18105-2010, а также предшествующем ГОСТ Р 53231-2008 метод отрыва не включен в перечень прямых методов неразрушающего контроля и вообще не упоминается. Причиной этому, по всей видимости, является ограниченный температурный диапазон применения метода, что связано с продолжительностью твердения и (или) невозможностью использования эпоксидных клеев при низкой температуре воздуха. Большая часть России расположена в более холодных климатических зонах, чем страны Европы, поэтому данный метод, широко применяемый в европейских странах, в нашей стране не используется. Другим отрицательным фактором является необходимость сверления борозды, что дополнительно снижает производительность контроля.

Контроль прочности бетона методом отрыва со скалыванием

Данный метод имеет много общего с описанным выше методом отрыва. Основным отличием является способ крепления к бетону. Для приложения отрывающего усилия используются лепестковые анкеры различных размеров. При обследовании конструкций анкеры закладываются в шпур, пробуренный на участке измерения. Так же, как и при методе отрыва, измеряется разрушающее усилие (Р). Переход к прочности бетона на сжатие осуществляется по указанной в ГОСТ 22690 зависимости:

Определение прочности бетона неразрушающими методами контроля

где m1— коэффициент, учитывающий максимальный размер крупного заполнителя, m2 — коэффициент перехода к прочности на сжатие, зависящий от вида бетона и условий твердения.

В нашей стране данный метод нашел, пожалуй, самое широкое распространение благодаря своей универсальности (табл.1), относительной простоте крепления к бетону, возможности испытания практически на любом участке конструкции. Основными ограничениями для его применения являются густое армирование бетона и толщина испытываемой конструкции, которая должна быть больше, чем удвоенная длина анкера. Для выполнения испытаний могут использоваться приборы, указанные выше.

Помимо более простого и быстрого крепления к бетону конструкции по сравнению с методом отрыва, не требуется обязательное наличие ровной поверхности. Главным условием является необходимость того, чтобы кривизна поверхности была достаточной для установки прибора на тягу анкера. В качестве примера на рис. 3 представлен прибор ПОС-МГ4, установленный на деструктированную поверхность устоя гидротехнического сооружения.

Контроль прочности бетона методом скалывания ребра

Последним прямым методом неразрушающего контроля является модификация метода отрыва — метод скалывания ребра. Основное отличие заключается в том, что прочность бетона определяют по усилию (Р), необходимому для скалывания участка конструкции, расположенному на внешнем ребре. В нашей стране долгое время выпускались приборы типа ГПНС-4 и ПОС-МГ4 Скол, конструкция которых предполагала обязательное наличие двух рядом расположенных внешних углов конструкции. Захваты прибора подобно струбцине крепились на испытываемый элемент, после чего через захватывающее устройство прилагалось усилие к одному из ребер конструкции. Таким образом, испытание можно было проводить только на линейных элементах (колонны, ригели) или в проемах на краях плоских элементов (стены, перекрытия). Несколько лет назад была разработана конструкция прибора, которая позволяет устанавливать его на испытываемый элемент с наличием только одного внешнего ребра. Закрепление осуществляется к одной из поверхностей испытываемого элемента при помощи анкера с дюбелем. Данное изобретение несколько расширило диапазон применения прибора, но одновременно с этим уничтожило основное преимущество метода скалывания, которое заключалось в отсутствии необходимости сверления и потребности в источнике электроэнергии.

Прочность бетона на сжатие при использовании метода скалывания ребра определяется по нормированной зависимости:

Определение прочности бетона неразрушающими методами контроля

где m — коэффициент, учитывающий крупность заполнителя.

Таблица 2. Сравнительные характеристики прямых методов неразрушающего контроля

О admin

Оставить комментарий

x

Check Also

Свайно винтовой фундамент: расчет, установка и монтаж своими руками, обвязка, чем закрыть?

Свайно — винтовой фундамент своими руками Если со свайным фундаментом некоторым застройщикам приходилось сталкиваться, или по крайней видеть, то свайно-винтовой фундамент для многих еще является диковинкой. Этот метод возведения основы здания, известный в строительном деле ...

Расчетная нагрузка на сваю: как рассчитать свайное поле, количество опор

Расчетная нагрузка на сваю и количество опор Расчетная нагрузка на сваю определяется в процессе проектирования фундамента. Этот параметр связан с размерами подошвы и глубиной погружения опор, эксплуатационной и конструкционной массой строения, общим количеством опор на ...

Статическое испытание свай: ГОСТ, расчет нагрузки на буронабивные опоры, цена

Статическое и динамическое испытание свай — для чего нужна проверка? Статическое испытание свай по ГОСТ 5686-94 используется для определения параметров, влияющих на процедуру выбора конструкции фундамента. В ходе таких испытаний можно определить оптимальную геометрию сваи ...

Дом без фундамента: как построить и можно ли обойтись?

Дом без фундамента – насколько реально? Дом без фундамента простоит на голом грунте считанные годы. Нижние венцы или блоки попросту раскрошатся, не выдержав разрушительной деформации пучения почвы. Но строительство жилищ без фундамента, а точнее с ...

Монтаж фундаментных блоков своими руками: технологическая карта для свайных, ленточных и столбчатых оснований, акт приемки

Монтаж фундаментных блоков — технология сборки Фундамент является основой любого капитального строения и может выполняться из различных материалов в зависимости от состояния грунтов, технических особенностей здания, расчетных нагрузок и прочего, влияющего на выбор конструкции фундамента ...

Проектирование фундаментов зданий и подземных сооружений: последовательность, цена

Проектирование фундаментов — последовательность и этапы Качество и долговечность любой постройки, гарантирует прочный фундамент, выполненный в строгом соответствии с нормативными требованиями. Так как на прочность, надежность и стоимость фундамента влияют очень многие факторы, то и ...

Фундамент 10 на 10 на 10: сколько стоит ленточное и плитное основание для дома, цена

Стоимость фундамента для дома размером 10 x 10 метров Любое фундаментное строительство начинается составлением сметы. Это позволяет приблизительно определить его стоимость и рационально распределить финансы на требуемые направления. Поскольку фундамент является начальным этапом любой постройки, ...

Мелкозаглубленный фундамент: устройство, утепление, как сделать расчет?

Преимущества фундаментов неглубокого заложения Фундамент по своему устройству может быть незаглубленный и заглубленный. В первом случае он располагается на поверхности почвы, а во втором — уходит вниз на глубину промерзания. Мелкозаглубленный фундамент совмещает в себе ...

Размеры фундаментных блоков: высота по ГОСТ, ширина, маркировка, цены

Размеры фундаментных блоков и маркировка Размеры фундаментных блоков зависят от принадлежности изделий к одному из нормированных сортаментов. Ведь сборное основание возводится только из стандартных элементов, размеры которых обязаны соответствовать друг другу. В ином случае строительство ...

Кирпичный фундамент ленточного типа, Строительство фундамента из кирпича своими руками

Нередко при выборе основания для того или иного сооружения кирпичный фундамент ленточного типа не рассматривается ввиду его недостаточной надежности. С подобным заблуждением нам приходилось сталкиваться неоднократно. Причина его в том, что, соблазнившись простотой конструкции, застройщик ...

Котлован под фундамент своми руками: от подготовки до результата

Процесс разработки котлована Прочный и качественный фундамент – это залог надежности строительной конструкции. Правильно возведенное основание позволяет не задумываться о ремонте здания много лет. Построить надежный фундамент можно только при последовательном выполнении всех работ. Одним ...

Стеновая опалубка алюминиевая: монтаж, цена аренды

Стеновая опалубка — виды и особенности монтажа Строительство из монолитного бетона практикуется уже долгие годы. Такие конструкции требуют меньших финансовых затрат при сохранении всех качеств надежности и прочности. В современном градостроительстве монолитное возведение стен, перекрытий ...

Аренда опалубки стен съемной и несъемной: цена

Аренда опалубки для стен — советы и рекоммендации Постройку частного дома можно значительно удешевить, если не покупать такие устройства как леса, съемная опалубка, а просто взять их напрокат. Ведь по завершению работ такое дорогостоящее оборудование ...

Свайный фундамент своими руками: расчет, как сделать обвязку, монтаж и армирование

Свайный фундамент — строительство своими руками Среди различных видов фундаментов, применяемых в современном строительстве, особо можно выделить свайный фундамент. Он применяется в тех случаях, когда почва на участке подвижная, неустойчивая, сыпучая. Либо грунтовые воды подходят ...

Расчет плитного фундамента: как рассчитать толщину, стоимость, примеры

Как выполнить правильный расчет плитного фундамента? Типичный плитный фундамент — это мелкозаглубленная или незаглубленная железобетонная плита, которая является основанием строения. В некоторых случаях предпочтение отдается именно такому типу фундамента. Например, если грунт на участке склонен ...

Гидроизоляция фундамента своими руками: как сделать, виды и материалы

Как выполнить гидроизоляцию основания дома самостоятельно? Фундамент любого строения находится в грунте, а он никогда не бывает сухим. Поэтому на материал фундамента действует постоянная сырость, которая вызывает образование плесени, грибка. Особенно это быстро происходит во ...

Рейтинг@Mail.ru